

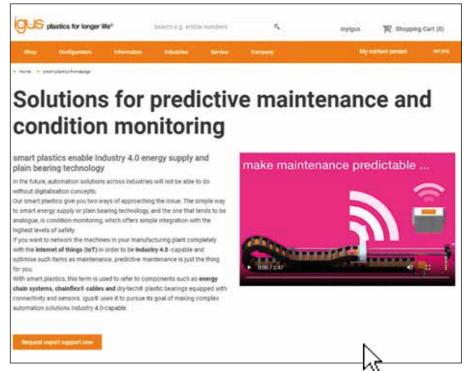
smart plastics | Introduction | Advantages

smart plastics enable Industry 4.0 energy supply

In the future, automation solutions across different industries will all have digitalisation. If you want to entirely network the machines in your manufacturing plant with the internet of things (IoT) in order to be Industry 4.0-compatible and optimise such items as maintenance, you will need time and money. A digitalisation strategy that begins by connecting and networking individual assemblies and components is faster and costs much less. Plant operators benefit immediately from the connectivity of smart components: status monitoring for automated plant can be implemented in real time without additional personnel, and maintenance can be organised predictively. smart plastics offer two options: the simple and rather analogue condition monitoring i.Sense (sense = perception), for integration with maximum safety. For the complete networking of the machines with the internet (IoT), the predictive maintenance i.Cee (Cee, derived from "see") is just right.

i.Sense - condition monitoring

- Simplest, fastest way for a self-monitoring smart plastics product, by attachment of sensors
- Alarm or message when a previously defined, measured limit value is exceeded
- Values outside defined limits can directly trigger a system shut-down


i.Cee - predictive maintenance

- Sensors and software help to create a system for dynamic service life calculation and optimal maintenance times
- Wide variety of designs, offering a high degree of individuality
- Maximum system and user safety and product service life.

Typical industries and applications

◆ Harbour installations ◆ Cranes ◆ Automotive production ◆ Bulk Handling ◆ Logistics ◆ Semi conductor industry

smart plastics | Online

smart plastics brochure

Overview with the following topics:

- Condition monitoring (i.Sense)
- Condition monitoring products
- Condition monitoring application examples
- Predictive maintenance (i.Cee)
- Application examples for predictive maintenance
- Predictive maintenance data flows
- ► www.igus.eu/smartplastics

smart plastics Website

Always stay up to date. New products, new techniques, new applications

► www.igus.eu/smartplastics

smart plastics online selection tool

With just a little information about your application, the online selection tool guides you to a preselection of **smart plastics** solutions. During the selection process, the tool provides an overview of the current options of **smart plastics**. You can then communicate your choice and submit an enquiry.

Try it for yourself ▶ www.igus.eu/smart-selection-guide

The igus® white paper on predictive maintenance
Clarifies the distinction between condition monitoring and predictive maintenance

- What igus® condition monitoring (i.Sense) means
- What igus® predictive maintenance (i.Cee) means
- What technology is behind both systems
- What the two systems offer industrial energy supply
- ► www.igus.eu/smart-selection-guide

Condition monitoring - i.Sense

- igus® products for condition monitoring
- Records machine status regularly or constantly
- Avoids crashes using fast switch-off

If smart plastics are used for condition monitoring, they immediately report any unexpected operating state, switch off the system, or sound an alarm. Industrial manufacturers use this function to minimise system failures and downtime.

www.igus.eu/condition-monitoring

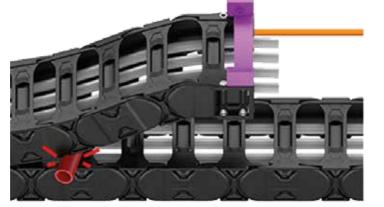
Control cabinet

- Simple module installation on top-hat (DIN) rail
- Integration into the existing plant control system via NC contacts
- 24V DC voltage supply

Module

Evaluate all sensor data based on igus® algorithms

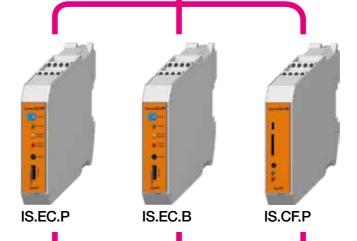
• IS.EC.P push/pull force detection for energy chains

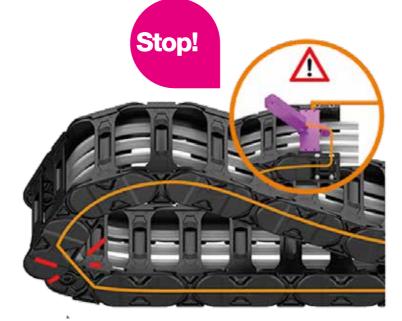

● IS.EC.B energy chain breakage detection • IS.CF.P tensile force monitoring for cables

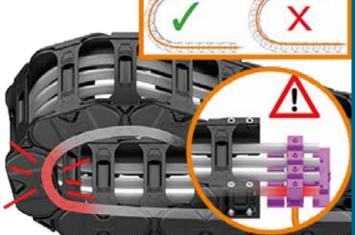
• Inform the plant controls in real time of any mechanical faults that occur

Sensor units

Stop!


IS.EC.P

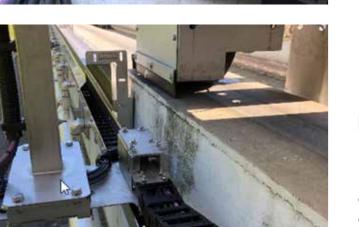

Condition Monitoring

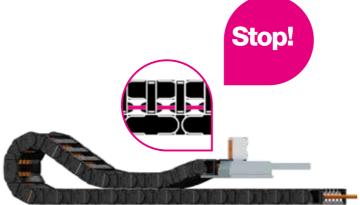

The concept of condition monitoring is based on a regular or constant recording of the machine condition by measuring and analysing physical parameters, e.g. vibration, temperature, position/ proximity. Condition monitoring pursues two goals: safety and machine efficiency.

(Source: Wikipedia)

IS.EC.B IS.CF.P

i.Sense masters a sewage treatment plant ...


Challenge


As the plant runs around the clock, and some of the time without any human presence, faults sometimes remain undetected for hours. Although the plant runs at a very slow speed, in the event of a failure it can lead to a total breakdown. This total breakdown of the energy supply system leads to significantly higher costs than a standstill for several hours, where the system can be put back into operation after a short maintenance period.

The solution with smart plastics

In this case the solution is the push/pull force monitoring system EC.P. This sensor continuously measures the force which the plant requires to move the energy supply system. If these forces change due to external influences such as ice, a debris or a tool forgotten during maintenance, the sensor detects this change and switches off the system. This prevents expensive consequential damage to the energy supply system.

EC.P - push/pull force detection for e-chains®

- Measures the push/pull forces acting on the e-chain[®]
- Recommends shutdown of the equipment if a force limit is exceeded
- Prevents failure

"A high price can be avoided."

To avoid unplanned breakdowns and plant shutdown, smart plastics from igus® are used on indoor gantry cranes for the automated handling of engine blocks at an Austrian automotive supplier. EC.B modules monitor the status of the e-chain®. In the event of a chain breakage, the machine is stopped automatically to prevent subsequent damage. Additional EC.W modules signal advanced wear of the e-chain®. The measurement of wear data means that a chain's remaining service life can be predicted and replacement can be planned at an early stage.

Read more about this application at

▶ www.igus.eu/smartplastics

"How do you put sliced bread intelligently into a bag?"

The GBK 440 packaging machine operates with high stroke rates in a compact installation space. This is why the developers used e-chains® and highly flexible chainflex® cables for reliable cable guidance. The GBK 440 ensures the safe packaging and sealing of product bags for sliced bread. The processing speed is individually adjustable. Even incredibly fast 80 cycles per minute are possible, which means considerably more than one packaged unit per second. GHD Georg Hartmann Maschinenbau was looking for a reliable energy supply system for its automatic packaging machines, including preventive monitoring to avoid machine failures.

Read more about this application at

www.igus.eu/smartplastics

The EC.P system has been the standard in container cranes for many years.

Predictive maintenance - i.Cee

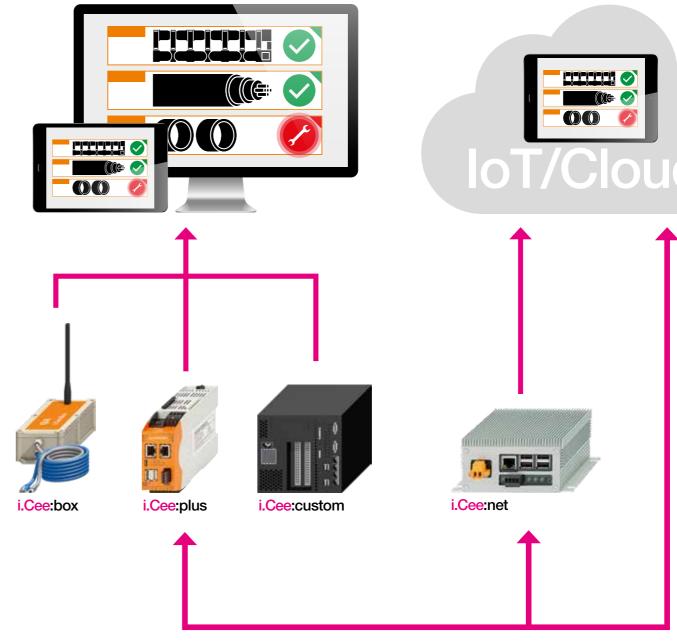
- Precisely predicts maintenance
- Prevents downtime or loss of quality

Both the above-mentioned sensors for service life calculation and the **i.Sense** sensor units for condition information provide data from which indicators for premature wear of the product or the risk of product failure can be determined at a very early stage. Based on the experience gained in the 3,800m² test laboratory for plain bearings and energy transmission solutions, in combination with self-developed algorithms, the system alerts and informs the user at an early stage about possible failure risks and/or the next maintenance date.

Offline: i.Cee:software / Online: i.Cee:cloud

i.Cee hardware

i.Cee:box


- Installation on or in the control cabinet for wireless communication with the sensor modules via LoRa technology
- Central unit for communication with LoRa sensors
- Supply of several assets possible
- Power supply via Ethernet cable
- Additional connection of i.Sense modules via USB possible

i.Cee:plus

- Installation on top-hat (DIN) rail in control cabinet
- Storage and processing of sensor data
- Constant calculation of the product's service life
- Upgrade to Cloud possible

i.Cee:custom

- igus® supplies the i.Cee software and uses the customer hardware
- Individual solution development with the customeri.Cee:net
- Connection to the igus® cloud is possible

Two options for data transmission: i.Cee:local / i.Cee:cloud

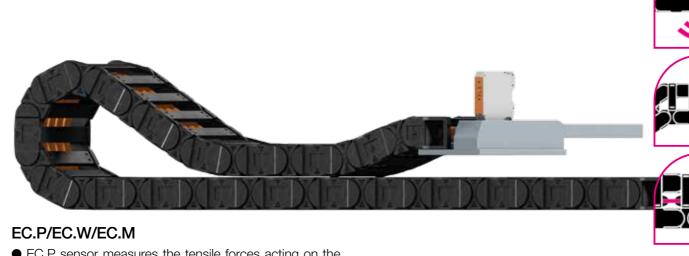
i.Cee ... in use at train washing station in Luxembourg ...

The solution with smart plastics The aim was to find a product that not only safely supplies the washing trolleys with data, voltage, compressed air, water and cleaning agents, but also fulfils CFL's requirement to operate Europe's most modern train washing plant. For this purpose, a system was required that allows the operator to monitor each individual energy chain and to avoid a breakdown of the plant. Besides an igus® energy chain designed for long travels, igus® smart plastics components were installed. Sensors monitor the status of every igus® energy chain during operation with regard to the application of force but also with regard to wear and tear, and inform in good time as soon as a repair or replacement is required. In the course of the modernisation of the energy chain systems, the entire cleaning system was also renewed, so that in addition to particularly environmentally friendly cleaning agents, the used washing water was also reused again and again through reprocessing.

Challenge

The previous energy chain systems of a competitor caused disruptions in the operation of the plant, as they were often failing. This was particularly problematic because the washing plant is operated autonomously, and a failure of an energy chain system could bring the entire washing process to a halt. The necessary repair measures were therefore time-consuming and partly necessary at night and on weekends. Failure would mean the confinement of a rail vehicle in the wash hall, which could result in the cancellation of several train runs.

... and many other exciting projects



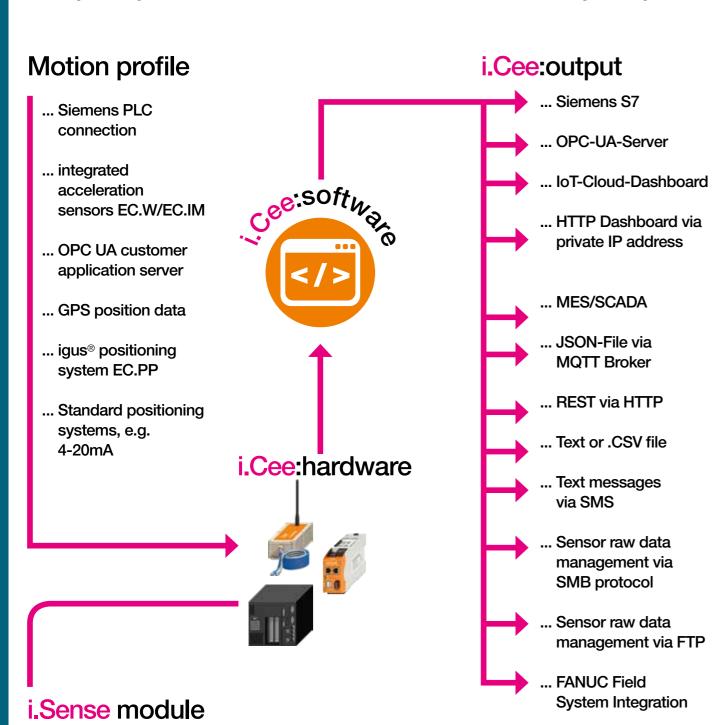
"If the containers stop ..."

A big German crane manufacturer relies on the i.Sense online system to ensure optimum production. All dynamic data is loaded into the igus® cloud. Here, using "machine learning" and Al algorithms, a calculation of the service life is performed and displayed in a Web dashboard on any Internet-enabled device as a statement of "days until the next recommended maintenance".

Read more about this application at

▶ www.igus.eu/smartplastics

- EC.P sensor measures the tensile forces acting on the
- EC.W Sensor measures the e-chain® wear
- EC.M sensor measures all dynamic parameters of the energy supply



I would be happy to answer your questions. Richard Habering

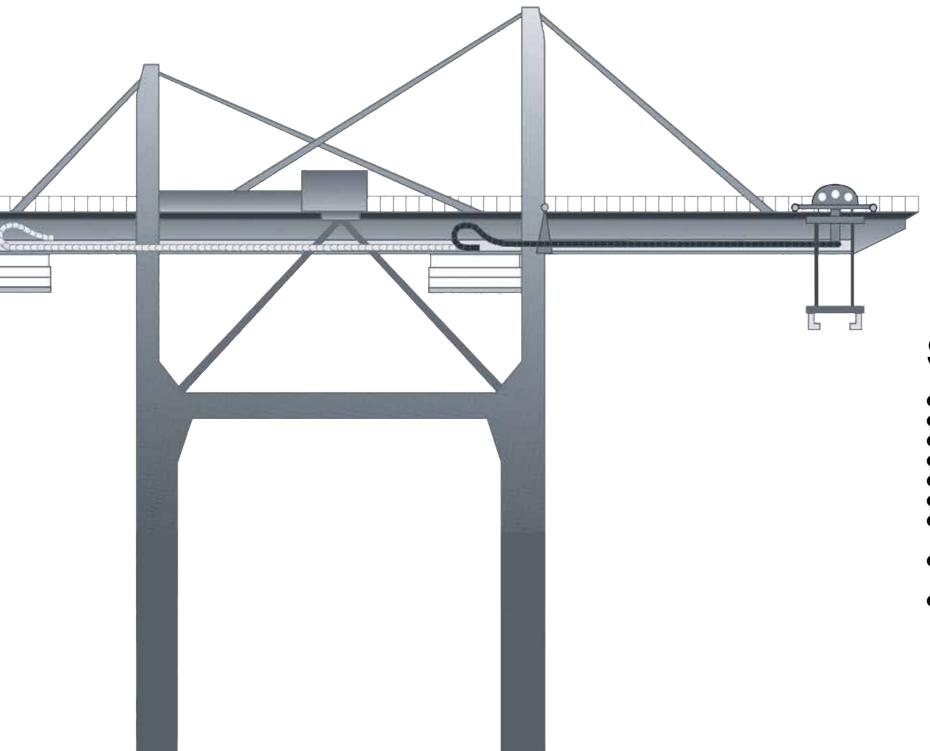
... Input options

... Output options

Anyone who can make reliable and useful predictions about maintenance work is one step ahead of the competition. In the age of digitisation, more than Big Data is required for such predictions. In order to be able to use the sensor data to derive the correct recommendations for maintenance to be accurately scheduled, long term empirical values from the igus® test database are used.

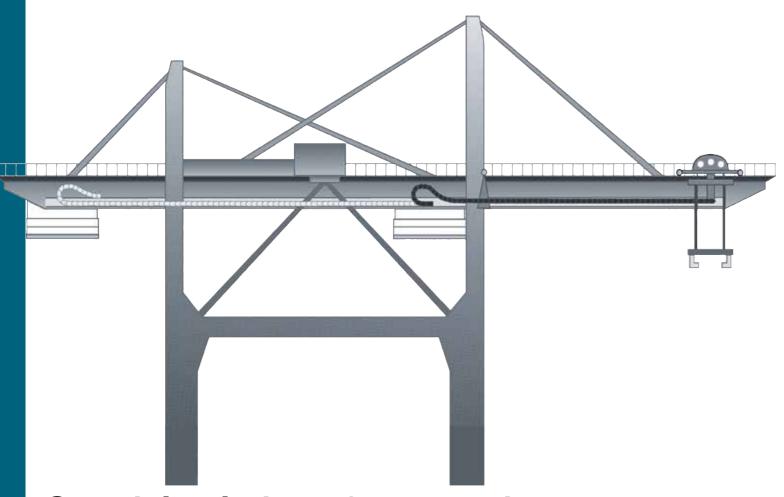
- 3,800m² test area
- 4,100 energy chain system tests annually at 180 test stations: climate chamber, outdoor tests, noise chamber, travel lengths up to 130m, robot systems, etc.
- 2 billion test cycles a year for highly flexible cables
- 1 million electrical measurements recorded annually
- 15,000 tribological tests (friction and wear) in 300 test set-ups
- 140 trillion test movements in the bearings business unit
- Sensors on the test machines provide permanent measurement data, processing in the central database

P4.1 e-chain® with EC.PP in the igus® outdoor test


Switch cabinet with smart plastics modules

Calculate service life online and get a 36-month guarantee!

igus® lab, Cologne. A section of the motion plastics® test laboratory spread over 3,800m2



Modular projects Special solutions from stock

- Faster quotations, faster project planning
- Detailed service manuals and documentation
- Time and cost savings
- Absolute functional reliability
- System guarantee available upon request and depending on the application
- Electronic Push/Pull Detection System i.Sense EC.P
- Fixed end modules for easy attachment of the e-chain® inside the guide trough, with no drilling required
- Extreme gliding gliding elements for even longer service life of e-chains® where long travels are involved
- HD trough systems with different installation set designs, matching the respective application and duty levels

1209 1208

Special solutions from stock modular projects

The igus® project kit system - tested project solutions proven in numerous applications are now available as standard modular kits.

- Faster quotations, faster project planning
- Detailed service manuals and documentation
- Time and cost savings
- Absolute functional reliability
- System guarantee available upon request and depending on the application
- i.Sense EC.P electronic Push/Pull Detection System
- Fixed end modules for easy attachment of the e-chain® inside the guide trough, with no drilling required
- Extreme gliding gliding elements for even longer service life of e-chains® where long travels are involved
- HD trough systems with different installation set designs, matching the respective application and duty levels

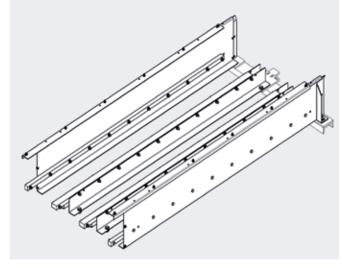
Typical industries and applications

● Cranes ● Offshore ● and many other industries

Long travels with electronic push/pull force monitoring with igus® i.Sense EC.P

Series 4040R on a coal unloading system. Travel 190m, speed 0.5m/s, fill weight 8.05kg/m

Crane system designed by igus®



Engineering - customer-specific developments with many solutions from the modular kit

www.igus.eu/projects

Series 4040HD on 180m travel lengths with housing. Temperature range from -40°C/+40°C and in very dirty environments

igus® project planning example, here: trough modules

